
TranSMART ETL Guide

Copyright© 2015 eTRIKS. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.
html.

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html

Contents

1 Introduction 3

2 Dependencies 3
2.1 Pentaho Data-Integration . 3
2.2 Java Runtime Environment . 3
2.3 TranSMART ETL Scripts . 3
2.4 SSH Client . 4
2.5 Postgres Client . 4

3 Set-Up 4
3.1 Database Connection Parameters . 4
3.2 SSH Tunnel . 4

3.2.1 Linux hosts . 5
3.2.2 Windows Hosts . 5
3.2.3 Connecting Through The Tunnel . 6

4 Kitchen/Spoon Basics 7
4.1 Input Files . 7
4.2 Loading A Script . 8

5 Clinical Data 10
5.1 Raw Data File . 10
5.2 Column Mapping File . 10
5.3 Word Mapping File . 13
5.4 Record Exclusion File . 14
5.5 Upload Script . 14
5.6 Example . 15

6 Gene Expression Data 16
6.1 Raw Intensity Input Files . 17
6.2 Subject Sample Mapping File . 17
6.3 Sample Remapping File . 18
6.4 Upload Script . 19
6.5 Example . 21

7 Gene Expression Platform Definitions 22
7.1 Platform Definition File . 22
7.2 Upload Script . 23
7.3 Example . 24

8 Uploading Data with ICE 24

9 Removing Data 24

10 Troubleshooting 25

A Sample kettle.properties file 28

B Removing a study 29

1 Introduction

This document is intended to be a guide for performing Extraction, Transformation and Loading
(ETL) processes in tranSMART. It covers the ETL pipeline on Windows and Linux systems,
for tranSMART instances running on a Postgres database. Chapter one in the Dataset Explorer
ETL Guide [1] gives an excellent discussion on how to plan and build your ontologies, which will
determine how data appears in tranSMART. This guide aims to combine the dispersed information
on ETL from various sources, such as the tranSMART Foundation Wiki [2] and the ETL Guide
mentioned above. This guide assumes that you have a working instance of tranSMART
installed.

2 Dependencies

You will need to have several pieces of software installed before you can begin the ETL process. The
next sections describe these dependencies and how to install them. The installation commands
provided here for Linux systems work on Debian based distributions. For other distributions,
please refer to your distribution’s software installation documentation.

2.1 Pentaho Data-Integration

The ETL process makes use of the Pentaho Data-Integration software suite version 4.4.0. It is avail-
able at http://sourceforge.net/projects/pentaho/files/Data%20Integration/
4.4.0-stable/. Extract this archive to an easily accessible location on your machine. In the
remainder of this document, this directory will be referred to as data-integration. This
software uses Kettle-scripts to read, transform, upload, and otherwise manipulate data. A Kettle
script defines a workflow to be performed on the data. This workflow is a sequence of tasks, where
each task can be a simple step (e.g. load data from file, check the data type of a field), a more
complex transformation (e.g. transform an entire table into a standard format) or even another
workflow. The goal of these scripts is to take data and configuration from multiple files, and
transform them to an appropriate format to be loaded to the landing tables in the database.

2.2 Java Runtime Environment

The data integration software requires a Java Runtime Environment (JRE) to be installed on your
system. You can find the latest version at http://www.oracle.com/technetwork/java/
javase/downloads/index.html. On Debian-based operating systems like Ubuntu you can
install the JRE directly by typing

sudo apt-get install openjdk-7-jre

at the command line. If you have a headless system (i.e. not running a graphical interface), you
are probably better off installing the headless version:

sudo apt-get install openjdk-7-jre-headless

2.3 TranSMART ETL Scripts

The Kettle-scripts for tranSMART are maintained in a GitHub repository located at https:
//github.com/transmart/tranSMART-ETL. You can either download the repository as a
zip file from the web page, or use a Git client to clone the repository. This directory will be
referred to as transmart-ETL.

http://sourceforge.net/projects/pentaho/files/Data%20Integration/4.4.0-stable/
http://sourceforge.net/projects/pentaho/files/Data%20Integration/4.4.0-stable/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/transmart/tranSMART-ETL
https://github.com/transmart/tranSMART-ETL

2.4 SSH Client

If you will be connecting from a remote host to the database, you will need an SSH client to set
up a secure connection to the database. On a Linux host, chances are an SSH client is already
installed. You can check this by typing ssh -V at the command line. You should see something
like this:

user@hostname:˜$ ssh -V
OpenSSH_6.6.1p1 Ubuntu-2ubuntu2, OpenSSL 1.0.1f 6 Jan 2014

If an SSH client is not available, now is the time to install one:

sudo apt-get install openssh-client

On a Windows host, you will need Putty and, depending on your situation, PuttyGen. Putty is
an SSH client and PuttyGen can be used to convert OpenSSH keyfiles to Putty’s own format. Both
Putty and PuttyGen are available at http://www.chiark.greenend.org.uk/˜sgtatham/
putty/download.html.

2.5 Postgres Client

Finally, you will need a Postgres client to if and when you need to talk directly to the database.
You can check the availability of a client with the psql -V command. You should see something
like this:

user@host:˜$ psql -V
psql (PostgreSQL) 9.3.6

If the Postgres client is not available, you can install it with the following command:

sudo apt-get install postgresql-client

On a Windows host, download the installer at http://www.postgresql.org/download/
windows/.

3 Set-Up

3.1 Database Connection Parameters

Create a directory called .kettle in your home directory. Copy the file transmart-ETL/
Kettle/postgres/kettle.properties to this directory. An example of this file is shown
in Appendix A. At the top of this file, there should be three variables. These variables contain the
details for connecting to the database. Change them to match your situation. The variables are:

� COMMON_DB_SERVER: URL or IP-address of the database server,

� COMMON_DB_PORT: Port of the database server. The default port number for Postgres is
5432,

� COMMON_DB_NAME: the database name. This is most likely transmart.

3.2 SSH Tunnel

By default Postgres only allows incoming connections from localhost. This means that only appli-
cations running on the same machine as Postgres can access the database. If you are performing
ETL on the same machine as where the Postgres databases lives, you should have no issue con-
necting to the database. If you are on a different machine however, you will probably need to
create an SSH tunnel to the Postgres database.

An SSH tunnel is a way to make a remote machine set up a connection to a server on your
behalf, and act as a middle man between you and the server. We will use this to make the machine

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/windows/

where Postgres is hosted connect to itself (Postgres will allow this since the connection originates
from localhost) and forward all traffic to us. This is visualized conceptually in Figure 1.

Figure 1: Conceptual representation of an SSH tunnel.

For this, we will use Local forwarding. This means that we will specify all components of the
tunnel manually. The Remote host is the host we will connect to, and subsequently the host that
will set up another connection on our behalf. The Source port identifies the entrance to the tunnel,
i.e. the port number on your own machine. Any free local port could be used, 9001 being a safe
choice. The Destination is where the remote host should connect to for us. This must point to
the Postgres server, which is by default located at 127.0.0.1, port 5432. Once this is set up, any
application on your machine can make a connection to local port 9001, and it will effectively be
connected to the Postgres database on a remote host. Now that we know the components of an
SSH tunnel, the following sections will describe how to set up this tunnel on Linux and Windows
hosts.

3.2.1 Linux hosts

On a Linux system, you can set up a tunnel with the following command:

ssh -L 9001:127.0.0.1:5432 user@remote-host

where you should substitude remote-host with the URL of the host where Postgres lives, and
user with your username on that host. This command will start a server listening on port 9001
on your machine.

3.2.2 Windows Hosts

This section assumes you have installed Putty as described above. Putty uses a different format for
private keys than OpenSSH. The Putty private key files have a .ppk extension. You can convert
between the two formats using PuttyGen. Open Putty and select the Tunnels subcategory from
the Connection/SSH category. In the Source port input box, type 9001. In the Destination box,
type 127.0.0.1:5432. Make sure the radio button Local is selected. Now click the Add button
to add this tunnel to your connection. You can add more than one tunnel over the same SSH
connection, if you need to. Your window should look like the example in Figure 2.

If you need to use a private key file for authentication, you can load your private key in the
Auth category. Click the Browse button to select your private key file. As discussed above, this
should be a .ppk-file. This is shown in Figure 3.

Now return to the Session category to fill out the host name. Give this connection a name in
the box right below Saved sessions and click Save. Now you can re-open this session anytime by
double clicking its name, without having to re-enter all the parameters. This is shown in Figure 4.

Figure 2: Filling out the tunnel configuration parameters in Putty.

Figure 3: Selecting a private key file in Putty.

Finally click Open to open the connection. When the connection is established, Putty is listening
for incoming connections on the local port 9001.

3.2.3 Connecting Through The Tunnel

Now that you have a tunnel set up on port 9001, any connections on that port will be forwarded to
postgres-host. On the other side SSH will connect to 127.0.0.1:5432, and allow traffic to

Figure 4: Entering the remote host and saving the session configuration in Putty.

flow from your machine to this connection. To Postgres it effectively looks as if you are connecting
from localhost, so it will accept your connection. Security is maintained since all traffic between
you and postgres-host is encrypted by SSH. In your kettle.properties file you should
set COMMON_DB_SERVER to 127.0.0.1, and COMMON_DB_PORT to 9001, since this is now your
entrance point to the Postgres server.

On both Windows and Linux systems, you can test your tunnel connection with the following
command:

psql -h 127.0.0.1 -p 9001

On a Windows host you might need to write the full path to psql.exe, but the same arguments
can be passed. If you get a password prompt, you have successfully connected and you can close
the connection by hitting Ctrl-C. If your tunnel is not set up properly, you will get a connection
refused message. In that case double-check your tunnel set-up.

Note You can choose any port number instead of 9001 for the local side of the tunnel. Although
you should pick a number higher than 1023, since the first 1023 port numbers are reserved for
system processes.

4 Kitchen/Spoon Basics

To perform the ETL processes, you can use either Kitchen or Spoon. Kitchen is the application that
can read the Kettle-scripts that will define and execute the necessary transformations. Spoon pro-
vides a graphical interface for viewing a script and setting its parameters. Under the hood, Spoon
calls Kitchen with the appropriate parameters. The folder transmart-ETL/Kettle/postgres
contains example startup scripts for use in a bash-shell. The first section below describes the gen-
eral procedure for loading a script and setting its parameters.

4.1 Input Files

In order to perform ETL, you will need to generate one or more input files. All input files should
be tab delimited text files. The sections below will describe all of these files, and the meaning

of all columns. Input file columns that are marked as optional are not required to contain data,
however the columns themselves (i.e. tab characters) should be there.

+ You are only allowed to omit entire columns from the file if they are the last columns.

For example, the column mapping file consists of four required columns and four optional ones.
Even if you will not use column five, seven and eight, you need to have a file with six columns in
total. This is illustrated in Figure 5.

The column headers are only considered in the data files. E.g. in clinical data files they can
be used as data labels, and in gene expression data files they identify the sample. For all other
input files, i.e. the ones containing configuration rather than data, only the column position is
considered. The sections below will clearly describe if a header row is required or not for all files.

Filename Category ColNb DataLabel CtrlVocabCode

GSEXXXX clinical.txt 1 SUBJ ID

GSEXXXX clinical.txt Demographics+Age 2 L-123

GSEXXXX clinical.txt 3 OMIT

(a)

Filename→Category→ColNb→DataLabel→→CtrlVocabCode

GSEXXXX clinical.txt→→1→SUBJ ID→→

GSEXXXX clinical.txt→Demographics+Age→2→→→L-123

GSEXXXX clinical.txt→→3→OMIT→→

(b)

Figure 5: Example of a column map file with three unused columns. The final two columns can
be omitted from the file, however column five should be included. (a): Structure of the example.
(b): Tab seperated file. The right arrows indicate tab characters.

4.2 Loading A Script

When invoking kitchen you should pass at least the -file=filename option, where filename
refers to the Kettle-script that you which to execute. In most cases you will also need to pass sev-
eral -param options, which set parameters that are used in the script. The syntax for this option
is -param:PARAM_NAME=PARAM_VALUE. You can instruct kitchen to write its output to a log
file with the -log=logfile option. The default logging level is Basic. If you are having trouble
uploading data, you can increase the logging level to e.g. Debug by passing the -level=Debug
option. You can check the full list of available logging levels at http://wiki.pentaho.com/
display/EAI/Kitchen+User+Documentation#KitchenUserDocumentation-Setthelogginglevel.

Spoon works in nearly the same way, but provides a graphical interface for setting the script
parameters. On the main window the script itself is graphically represented so it can be viewed
and edited. Start up spoon by executing the spoon.bat (on Windows) or spoon.sh (on Linux)
script. Choose Open under the File menu, and navigate to the script you which to execute. Click
on the Run this job icon in the toolbar or choose Run from the Action menu (see Figure 6).

A dialog similar to the one in Figure 7 should appear. The section marked in green represent
the parameters to be passed to the script, and should be filled out manually. These parameters
will depend on the job and will be discussed in the following sections. The section marked in red

http://wiki.pentaho.com/display/EAI/Kitchen+User+Documentation#KitchenUserDocumentation-Setthelogginglevel
http://wiki.pentaho.com/display/EAI/Kitchen+User+Documentation#KitchenUserDocumentation-Setthelogginglevel

are global variables. The values for global variables used by the current script are taken from your
kettle.properties file, and are shown in this section. Above the variables section there is a
drop down box marked in blue which enables you to modify the logging level.

Figure 6: Starting a job with Spoon

Figure 7: Configuring a job with Spoon

5 Clinical Data

Loading clinical data requires at least a raw data file and a column mapping file. The word mapping
and record exclusion files are optional. Below follows a description of the input files, followed by
information on invoking the clinical data upload script. The filenames do not need to follow a
predefined convention, you can specify each filename as a parameter for the upload script. Since
all input files will be referred to relative to a single source directory, it is advisable to keep all of
the input files in the same directory.

Figure 8: Conceptual representation of the ETL process for clinical data.

5.1 Raw Data File

Generate one or more files which contain the data that you wish to upload into tranSMART. Each
file should be a tab-delimited text file with one header row, a column for the subject identifier and
a column for each attribute. The following section describes the column mapping file, which will
define the meaning of each column.

5.2 Column Mapping File

The column mapping file is a tab-delimited file with at least four columns and is used to map
columns from the raw data files to concepts in the Dataset Explorer ontology tree. Table 1
describes the structure of this file. If you choose to include one or more of the optional columns
listed below, they must appear as the n’th column, where n is the position listed below.

Table 1: Description of columns in the column mapping file

Pos Column Description Example

1 FILENAME The name of the
raw data file con-
taining the data.
If your raw data is
distributed across
multiple files, they
can all be refer-
enced with one
column mapping
file.

GSEXXXX clinical.txt

2 CATEGORY_CD This describes the
position of the con-
cept in the study
structure within
tranSMART

Clinical Data+Alcohol Habits

3 COL_NBR The column num-
ber in the datafile
that should be
mapped

3

Table 1: (continued)

Pos Column Description Example

4 DATA_LABEL The data label you
wish to assign to
this column of the
data file. Ket-
tle will automati-
cally pull the col-
umn heading and
use it as the data
label if you leave
this empty. If you
would like to map
the column heading
to a new label, en-
ter it here.

The reserved words below instruct Kettle
to perform specific actions. Reserved words
must be fully capitalized to be recognized.

� OMIT: Skip the column.

� SUBJ_ID: The data in this column is the
subject ID.

� SITE_ID: The ID of the site where this
data was acquired.

� VISIT_NAME: Use the data in this col-
umn as the visit name. A subject’s
attributes can be measured at multiple
points in time. Each concept will be ex-
tended with the distinct values found in
this column.

� DATA_LABEL: Treat the data in this col-
umn as a data label for another column.

� \: Maps the data as a data value of a
column designated as a DATA_LABEL col-
umn.

� VISIT_NAME_2: A second level of visit
name. The total visit name will become
VISIT_NAME\VISIT_NAME_2.

� SEQ_COL: If a subject’s attribute was
measured multiple times, this column in-
dicates the sequence number of the mea-
surement. The values in this column
should therefore be integer and strictly
positive.

� UNITS: Units for the value in column
ALT_DATA_LABEL.

In addition to these reserved words, there
exist the following reserved concept names:
Age, Race, Sex and Gender. Sex and Gender
are synonyms. If a column carries this label,
it will be automatically incorporated in the
summary statistics page of the Dataset Ex-
plorer. In contrast to the reserved keywords,
the match on these concept names is not case
sensitive. The concept will appear in the on-
tology tree with the same capitalization as
you have written it here.
Note Each raw data file must include one
column that carries the label SUBJ ID. All
other reserved words are optional.

Table 1: (continued)

Pos Column Description Example

5 ALT_DATA_LABEL
(optional)

Use this column if
you wish to use the
data in a column
as a data label for
another column,
or if you wish to
aggregate multiple
data values. Ag-
gregate functions
are applied over
rows which have
the same values in
all columns except
for COL_NBR.

This field specifies the number of the col-
umn that should be used as the source for
the data label. This column cannot be left
blank for any row where the \ is used in
the data label field. In rare circumstances
where multiple columns must be integrated
together, use the following convention:

� Append an A to the column number if you
want to have the value from the other col-
umn added as a level in the ontology after
the data label of the column.

� Append a B to the column number if you
want to have the value from the other col-
umn added as a level in the ontology be-
fore the data label of the column (for ex-
ample, 4A, 6B, etc.).

The default is A if not specified. If you want
aggregation, set this field to MIN, MEAN or
MAX for the minimum, mean or maximum
respectively.

6 CTRL_VOCAB_CODE
(optional)

Use this column if
you wish to map
the record to a con-
trolled terminology
(for example,
SNOMED or
MedDRA).

L-85B02

7 SEQ_FORMAT_FROM
(optional)

Undocumented

8 SEQ_FORMAT_TO
(optional)

Undocumented

5.3 Word Mapping File

The word mapping file is an optional file that allows a data value to be transformed into another
data value. Any exact match in the specified column of the raw data file will be transformed to the
new data value. The word mapping file is primarily used to map categorical values to a controlled
vocabulary, and also to change unknown and null values into a value that can be displayed in
tranSMART. A word mapping file must be a tab-delimited text file with four columns, which are
described in Table 2.

Table 2: Description of columns in the word mapping file

Pos Column Description Example

1 FILENAME The name of the file containing the data
you wish to remap.

GSEXXXX clinical.txt

2 COL_NBR The column number within the raw
clinical data file that should be
mapped.

3

3 FROM_VALUE The original data value of the record RA

4 TO_VALUE The new data value you wish to display Rheumatoid Arthritis

5.4 Record Exclusion File

The record exclusion file is a tab delimited text file that is used to exclude records with a specific
value in a particular column of the raw data file from the upload process. If the column value for
a particular line matches the exclude value, the entire line is skipped. No data for that subject
will be found in the database. Table 3 describes the columns that make up this file.

Table 3: Description of columns in the record exclusion file

Pos Column Description Example

1 FILENAME The name of the file containing the data
you want to filter.

GSEXXXX clinical.txt

2 COL_NBR The column number within the raw
clinical data file that should be checked.

3

3 VALUE The data value you wish to exclude N/A

5.5 Upload Script

Make sure you have prepared your data in the formats listed above. The Kettle-script for clinical
data is located at transmart-ETL/Kettle/postgres/Kettle-ETL/create_clinical_
data.kjb. Table 4 describes the parameters that can be passed to the create_clinical_data.kjb
script. Use either Kettle or Spoon as described above to load the script and set its parameters.

Table 4: Clinical data upload parameters

Name Default Description

COLUMN_MAP_FILE x Filename of the column mapping file

DATA_LOCATION x Full path to the input files. All other filenames are
relative to this path.

PSQL_PATH x Path to your psql executable. E.g. C:
\Program Files\PostgreSQL\bin\psql.
exe or /usr/bin/psql. Only used if LOAD_TYPE
= L.

Table 4: (continued)

Name Default Description

HIGHLIGHT_STUDY N Y will cause the study name to be shown in green in
the ontology

LOAD_TYPE I I: load the data by generating an insert state-
ment for each row. This is the preferred method
for loading to the database. L: load the data
through the Postgres bulk loader. This can be
more efficient than the I option, although in
most cases the performance difference is negligi-
ble. You need te set PSQL_PATH as well to use
this option. F: instead of loading to the database,
write to a file. The data will be written to a
file called <STUDY_ID>_clinical_data, where
<STUDY_ID> is the study ID you configured with
the STUDY_ID parameter.

SECURITY_REQUIRED N N: Indicates this is a public study. Any user logged
in to tranSMART can view this study. Y: A
tranSMART administrator needs to give explicit ac-
cess to each user who requires access to this study.

SORT_DIR $HOME Full path to a directory where temporary files can
be stored for sorting

STUDY_ID x Unique identifier of the study.

+ The study ID will be transformed to up-
percase during ETL. This means that all
future references to the study ID must
be in uppercase as well.

TOP_NODE x The string that defines the top node of the ontol-
ogy, including the full name of the study. For exam-
ple: \Public Studies\Breast_Cancer_Kao_
GSE20685\

WORD_MAP_FILE x Optional file that remaps values when reading source
files

RECORD_EXCLUSION_FILE x Optional file defining filters to exclude records

5.6 Example

In this example we will upload a small mock study, using the aspects defined above. The
files can be found in the Clinical data directory included with this document. The clinical
data upload example consists of four files: GSEXXXX_clinical.txt, GSEXXXX_columns.txt,
GSEXXXX_words.txt and GSEXXXX_record_exclusion.txt. It is recommended to study
the contents of each file, in order to understand the upload process.

GSEXXXX_clinical.txt contains the raw clinical data. Notice that the DAS28 column has
one missing value, and one value set to NA. In this example, we want to exclude the subject for
which the DAS28 score is NA. We create a record exclusion file with one line defining the exclusion

parameters. Additionally, we want to rename the value of RA in the disease_state column
to Rheumatoid Arthritis. The word mapping file can help us do that. Finally, we use the
column mapping file to define the study ontology.

Now we are ready to start the ETL process. As the top node of our study, we choose
\Public studies\GSEXXXX\. You can review the meaning of all parameters in table 4. Since
typing out all parameters every time can be tedious, we recommend keeping a small script file
within the study directory. If you need to re-upload the data at a later point, you can just
run this script. The Clinical data directory contains scripts for both Linux and Windows
environments.

On a Linux machine, open the file load_clinical.sh in the study directory. On a Win-
dows machine, open the file load_clinical.bat in the study directory. Change the DATA_
INTEGRATION_PATH and TRANSMART_ETL_PATH variables to the location of the Data Integra-
tion software suite and the tranSMART-ETL repository respectively. Notice that when keeping
the upload script together with the data files, we can set the DATA_LOCATION parameter to .
(current directory). Finally check the location of your psql executable and make sure it corre-
sponds to the SQLLDR_PATH parameter. In a terminal, navigate to the Clinical data directory
and start the upload script. On Linux, type bash load_clinical.sh, on Windows, type
load_clinical.bat.

Alternatively, you can use Spoon as described in section 4. Just hit the run button and copy
all parameter values over from the script to the appropriate input fields in Spoon.

Kitchen will produce a large amount of output. Check the last few lines output. If everything
went well, these lines should look like this:

INFO 07-05 08:56:52,708 - Kitchen - Finished!
INFO 07-05 08:56:52,708 - Kitchen - Start=2015/05/07 08:56:45.339,

Stop=2015/05/07 08:56:52.708
INFO 07-05 08:56:52,708 - Kitchen - Processing ended after 7 seconds.

Kitchen will also tell you if something went wrong:

INFO 07-05 08:56:19,419 - Kitchen - Finished!
ERROR 07-05 08:56:19,419 - Kitchen - Finished with errors
INFO 07-05 08:56:19,419 - Kitchen - Start=2015/05/07 08:56:18.982,

Stop=2015/05/07 08:56:19.419
INFO 07-05 08:56:19,419 - Kitchen - Processing ended after 0 seconds.

Notice the extra line warning you about errors. If there are errors, double-check the script param-
eters and variables.

Log in to your tranSMART instance to admire your work! Open the study node. The ontology
should look like the one shown in Figure 9. Notice that altough we have 20 subjects in our input
file, only 19 were uploaded to tranSMART. Remember that we excluded the subject with the NA
value for DAS28 using the record exclusion file. Additionally, there was a subject with a missing
DAS28 score. As a result, we can see that there are 19 subjects in the study, of which only 18
have the DAS28 concept. Finally, we can see that the RA concept was mapped to Rheumatoid
Arthritis.

6 Gene Expression Data

Loading gene expression data requires at least a raw data file, a subject sample mapping file and it
requires the platform definition to be present in tranSMART. Uploading the platform definition
is discussed in Section 7. The sample remapping file is optional. Below follows a description of
the input files, followed by information on invoking the gene expression data upload script. If you
have clinical data from the same study as well, it is important to upload the clinical data first.
Gene expression data can be linked to subjects who already have clinical data in the database,
but not the other way around.

Figure 9: Ontology of the example study

Figure 10: Conceptual representation of the ETL process for gene expression data.

6.1 Raw Intensity Input Files

The raw intensity values can be located in one or more tab delimited text files. The first row
denotes the column headers. The first column should be named ID_REF, and refers to the probe
ID from which the intensity was measured. All subsequent columns names are sample IDs. These
sample IDs will be used in the subject sample mapping file to map sample IDs to subject IDs from
clinical data.

6.2 Subject Sample Mapping File

The subject sample mapping file is a tab delimited text file. It holds information on each of the
samples in the raw data files. Table 5 describes the columns that make up this file.

Table 5: Description of columns in subject sample mapping file

Pos Column Description Example

1 STUDY_ID Identifier of the study. Remember that study IDs
are always uppercase

GSEXXXX

2 SITE_ID Identifier of the site where the samples were ac-
quired

3 SUBJECT_ID Identifier of the subject. This should correspond
to the identifier of a subject in the clinical data
file

SUBXXXX

4 SAMPLE_ID Identifier of the sample. This should correspond
to a column name in the raw intensity data file

SAMXXXX

5 PLATFORM The platform identifier GPL201

6 TISSUETYPE Tissue type from which the sample was collected Synovial Tissue

7 ATTR1 Custom attribute 1. The value of this field can
be used in the category code to make it part of
the ontology

8 ATTR2 Custom attribute 2. The value of this field can
be used in the category code to make it part of
the ontology

9 CATEGORY_CD Category code where this gene expression data
will be inserted in the ontology. You can use the
keywords PLATFORM, TISSUETYPE, ATTR1
and ATTR2 here as well. PLATFORM will be
replaced by the description of the platform in
the PLATFORM column, the other keywords will
be replaced by their values in the corresponding
columns. Use + to seperate ontology levels and

for spaces.

Biomarker Data+
Gene Expression+
PLATFORM+
TISSUETYPE

10 SOURCE_CD Identifier of data source GEO

6.3 Sample Remapping File

The sample remapping file is optional and is a tab delimited text file. You can use this file
to rename specific sample IDs in particular input files to something else. Table 6 describes the
columns that make up this file.

Table 6: Description of columns in the sample remapping file

Pos Column Description Example

1 REMAP_DATA_FILENAME Name of the file that holds
the data to be remapped

raw.GSEXXXX expression.txt

2 CURRENT_SAMPLE_ID The sample ID to be renamed

Table 6: (continued)

Pos Column Description Example

3 NEW_SAMPLE_ID The new name of the sample
ID

6.4 Upload Script

Make sure you have prepared your data in the formats listed above. The Kettle-script for gene ex-
pression data is located at transmart-ETL/Kettle/postgres/Kettle-ETL/load_gene_
expression_data.kjb. It is important to know that tranSMART stores three projections of
the data: the raw data, the log-transformed data and the z-score. When exporting data you can
choose which projection you want. Therefore it is important to set the DATA_TYPE parameter
(described below) to the correct value.

Table 7 describes the parameters that can be passed to the load_gene_expression_data.kjb
script. Use either Kettle or Spoon as described above to load the script and set its parameters.

Table 7: Gene expression data upload parameters

Name Default Description

BULK_LOADER_PATH x Path to your psql executable. E.g. C:
\Program Files\PostgreSQL\bin\psql.exe or
/usr/bin/psql. Only required if LOAD_TYPE set to
L.

DATA_FILE_PREFIX x Prefix for the filenames of raw gene expression data files

DATA_LOCATION x Full path to the input files

DATA_TYPE L Can be R, L or T.

� R: The data are raw intensity values, no transforma-
tion has occured. In this case the log (base LOGBASE)
and z-score is calculated. The z-score is trimmed to
the interval [−2.5, 2.5] and calculated from the log
values.

� L: The data has been log transformed. It is uploaded
to the log projection and a z-score is calculated from
this. The zscore is trimmed to the interval [−2.5, 2.5].
The raw intensity is derived using LOGBASE.

� T: data will be uploaded with no additional transfor-
mation to the log-projection. Data is also loaded to
the z-score projection, but there it is trimmed to the
interval [−2.5, 2.5].

FilePivot_LOCATION x Full path to directory where FilePivot.jar is lo-
cated. This file should be located in transmart-ETL/
Kettle/postgres/

Table 7: (continued)

Name Default Description

JAVA_LOCATION Full path to the directory where java (or java.exe)
is located.

LOAD_TYPE I I: load the data by generating an insert statement for
each row. This is the preferred method for loading to
the database. L: load the data through the Postgres bulk
loader. This can be more efficient than the I option, al-
though in most cases the performance difference is neg-
ligible. You need te set BULK_LOADER_PATH as well to
use this option. F: instead of loading to the database,
write to a file. The data will be written to a file called
<STUDY_ID>_clinical_data, where <STUDY_ID>
is the study ID you configured with the STUDY_ID pa-
rameter.

LOG_BASE 2 The log base to use when log transforming raw data.
Also used to derive the raw intensity value from already
log transformed data.

MAP_FILENAME x Filename of the subject-to-sample mapping file

SAMPLE_REMAP_FILENAME Filename of the sample remapping file. Omit this pa-
rameter or set it to NOSAMPLEREMAP if there is no
sample remapping.

SAMPLE_SUFFIX If all sample cds have a common suffix that you wish to
remove, you can specify that suffix here. Note: The suf-
fix will not be removed if a SAMPLE_REMAP_FILENAME
is specified

SECURITY_REQUIRED N N: Indicates this is public data. Any user logged in to
tranSMART can view this data. Y: A tranSMART ad-
ministrator needs to give explicit access to each user who
requires access to this data.

SORT_DIR x Full path to a directory where temporary files can be
stored for sorting

SOURCE_CD STD Only samples with a matching DATA_SOURCE_CD
column in the subject sample mapping file will
be imported. Samples with an empty (null)
DATA_SOURCE_CD will be imported regardless of the
value of this parameter

STUDY_ID x Unique identifier of the study. This will be transformed
to all caps before being used

TOP_NODE x The string that defines the node under which
this data will be inserted. For example:
\Public Studies\Breast_Cancer_Kao_
GSE20685\Gene Expression

6.5 Example

In this example we will add gene expression data to the mock study. If you have not uploaded
the mock study yet, please refer to section 5.6. The gene expression data can be found in the
Expression data directory included with this document. The file raw.GSEXXXX_expression.txt
contains the raw expression values. The subject sample mapping is defined in Subject_Sample_
Mapping.txt.

If you are on a Linux system, open the load_gene_expression.sh file. On a Windows
system, open the load_gene_expression.bat file. Change the DATA_INTEGRATION_PATH
and TRANSMART_ETL_PATH variables to the location of the Data Integration software suite and
the tranSMART-ETL repository respectively. In contrast to the clinical data upload script, we can
not refer to the data location by relative path. The data location is also passed to file pivoter, so
it needs to be an absolute path. Complete the file by defining the DATA_LOCATION parameter. If
the Java executable can not be found automatically by your system, you must specify its location
with the JAVA_LOCATION parameter. In a terminal, navigate to the Expression data directory
and start the script. On Linux, type bash load_gene_expression.sh, on Windows, type
load_gene_expression.bat.

Alternatively, you can use Spoon as described in section 4. Just hit the run button and copy
all parameter values over from the script to the appropriate input fields in Spoon.

Just like uploading clinical data, kitchen will produce a large amount of output. Check the
last few lines output. If everything went well, these lines should look like this:

INFO 07-05 08:56:52,708 - Kitchen - Finished!
INFO 07-05 08:56:52,708 - Kitchen - Start=2015/05/07 08:56:45.339,
Stop=2015/05/07 08:56:52.708
INFO 07-05 08:56:52,708 - Kitchen - Processing ended after 7 seconds.

Kitchen will also tell you if something went wrong:

INFO 07-05 08:56:19,419 - Kitchen - Finished!
ERROR 07-05 08:56:19,419 - Kitchen - Finished with errors
INFO 07-05 08:56:19,419 - Kitchen - Start=2015/05/07 08:56:18.982,
Stop=2015/05/07 08:56:19.419
INFO 07-05 08:56:19,419 - Kitchen - Processing ended after 0 seconds.

Notice the extra line warning you about errors. If there are errors, double-check the script param-
eters and variables.

Log in to your tranSMART instance to admire your work! Open the study node. You should
now see an extra node compared to the ontology shown in Figure 9. The gene expression data has
been added to the study and linked to the existing subjects thanks to the subject sample mapping
file. Your ontology should like shown in Figure 11.

Figure 11: Ontology of the example study, after uploading gene expression data

7 Gene Expression Platform Definitions

Before you can upload gene expression data, you have to define the platform that was used to
generate the intensity values. NCBI’s Gene Expression Omnibus [3] has a large collection of
platform definitions available.

Figure 12: Conceptual representation of the ETL process for gene expression platform definition.

7.1 Platform Definition File

The platform definition file is a tab delimited text file. The necessary columns are described in
Table 8. The position of these columns in the text file does not matter, you will need to define
their positions in the Kettle script used to upload platform definitions. Lines starting with !, #
or ∼ are treated as comments and will be ignored.

If you need to preprocess the platform definition file, it is advised to put the columns shown in
Table 8 in the order they appear in that table. Then you can set the DATA_SOURCE parameter of
the Kettle script to P, which will upload the platform definition file directly to the correct database
table.

Table 8: Description of columns in the platform file

Column Description Example

GPL_ID GPL ID of the platform this probe belongs to GPL201

PROBE_ID ID of the probe. These IDs should correspond to probe IDs
in gene expression data files.

1007 s at

GENE_SYMBOL Gene symbol corresponding to this probe. This field can be
left empty, e.g. when a particular probe has not yet been
mapped to a gene.

DDR1

GENE_ID Numeric ID for this gene. If omitted, tranSMART will
look for the gene symbol in other platform definitions that
are already on the system and fill out this field if the gene
symbol is found.

780

ORGANISM The organism this platform operates on Homo Sapiens

A second format for platform definition files is supported as well. This second format embeds
a table in the gene symbol column. Columns of this embedded table should be separated by the
string defined in the GENETAB_DELIM Kettle script parameter, and rows should be separated by
the string defined in the GENETAB_REC_DELIM parameter. The embedded table should contain
at least two columns, one for the gene symbol and one for the gene ID. It can contain multiple
rows to represent that the probe corresponds to multiple genes.

7.2 Upload Script

The Kettle script used to upload platform definitions is located at transmart-ETL/Kettle/
postgres/Kettle-ETL/load_annotation.kjb. Its parameters are listed in Table 9.

Table 9: Description of parameters in the platform upload file

Name Default Description

ANNOTATION_DATE Release date of the platform

ANNOTATION_RELEASE Release number of the platform

ANNOTATION_TITLE NOTITLE Platform title. E.g. Affymetrix Human Genome U95
Version 2 Array

DATA_LOCATION Full path to the platform definition file

DATA_SOURCE A A: Platform definition file needs to be preprocessed.
This option will extract the necessary columns based
on the information below. P: Platform definition file
is a preprocessed definition file, and can be directly
loaded.

EMBEDDED_GENE_TABLE N Y or N, if the platform definition file contains an em-
bedded gene table (see above) or not, respectively.
This parameter is only considered if DATA_SOURCE
is set to A.

GENETAB_DELIM // Delimiter of the columns in the embedded gene table

GENETAB_ID_COL -1 Column number of the gene ID in the embedded gene
table

GENETAB_REC_DELIM /// Delimiter of the rows in the embedded gene table. If
the platform definition file does not contain a gene
table, use this string as a delimiter in the gene symbol
and gene ID columns

GENETAB_SYMBOL_COL -1 Column number of the gene symbol in the embedded
gene table

GENE_ID_COL 19 Column index of the gene ID

GENE_SYMBOL_COL 15 Column index of the gene symbol

GPL_ID GPLXXX GPL ID of the platform

LOAD_TYPE I I: load the data by generating insert statements for
each row. L: load the data through the Postgres bulk
loader. F: instead of loading to the database, write to
a file. Note: The F option can only be applied when
DATA_SOURCE is set to A.

ORGANISM_COL 3 Column index of the organism

PROBE_COL 1 Column index of the probe ID

SKIP_ROWS 1 Number of rows to skip. Note: This script does not
assume a header row is present. If a header row exists,
this should be set to one.

Table 9: (continued)

Name Default Description

SOURCE_FILENAME x Filename of the platform definition file

SQLLDR_PATH Full path to your psql executable

7.3 Example

+ This section has yet to be completed.

8 Uploading Data with ICE

The FCL4tranSMART application provides an Integrated Curation Environment (ICE) where
you can design your ontology, column mappings and other aspects in a GUI application. The
application was developed for tranSMART version 1.1, and is currently incompatible with version
1.2. When a new version of this application is released, this document will be updated as well.
For future reference, the most recent version of the application is available at https://github.
com/transmart/tranSMART-ETL/tree/master/FCL4tranSMART/Postgres.

9 Removing Data

Sometimes it will be necessary to remove an entire study from the database, e.g. to re-upload it
with a different tree structure. You need to know the study ID of the study you which to remove.
Remember that study IDs are always uppercase. The commands below are for Linux hosts. On a
Windows host, just replace psql by psql.exe, and make sure your terminal is in the directory
containing psql.exe.

If you have a tunneled connection to the database, use the following command to log in to an
interactive shell as the user tm_cz:

psql -U tm_cz -h 127.0.0.1 -p 9001 transmart

When you are on the machine hosting the database itself, you will most likely still need to connect
through a network socket. By default Postgres will look at your system username when not
connecting through a network socket. This is easily avoided by passing the -h parameter just like
when connecting from a remote host:

psql -U tm_cz -h 127.0.0.1 transmart

When asked for a password, enter tm_cz and press enter. You should now see the prompt
transmart=>, indicating that you are connected.

The clinical data, metadata and gene expression data are stored in a number of different tables.
Execute the following commands, where you replace {STUDYID} by the actual study ID that you
want to remove. Remember that the study ID is always uppercase. On Linux, you can also use
the script provided in Appendix B.

DELETE FROM i2b2metadata.i2b2_tags WHERE path=
(SELECT c_fullname FROM i2b2metadata.i2b2
WHERE sourcesystem_cd='{STUDYID}' ORDER BY c_hlevel ASC LIMIT 1);

DELETE FROM i2b2demodata.concept_dimension
WHERE sourcesystem_cd='{STUDYID}';

https://github.com/transmart/tranSMART-ETL/tree/master/FCL4tranSMART/Postgres
https://github.com/transmart/tranSMART-ETL/tree/master/FCL4tranSMART/Postgres

DELETE FROM i2b2demodata.concept_counts
WHERE concept_path IN
(SELECT c_fullname FROM i2b2metadata.i2b2
WHERE sourcesystem_cd='{STUDYID}');

DELETE FROM i2b2demodata.patient_dimension
WHERE sourcesystem_cd LIKE '{STUDYID}:%';

DELETE FROM i2b2demodata.observation_fact
WHERE sourcesystem_cd='{STUDYID}';

DELETE FROM deapp.de_subject_microarray_data
WHERE trial_name='{STUDYID}';

DELETE FROM deapp.de_subject_sample_mapping
WHERE TRIAL_NAME='{STUDYID}';

DELETE FROM i2b2metadata.i2b2 WHERE sourcesystem_cd='{STUDYID}';

DELETE FROM i2b2metadata.i2b2_secure WHERE c_fullname='{STUDYID}';

10 Troubleshooting

During an ETL process, a lot can go wrong. The cause can sometimes be difficult to determine.
This section provides some ways to help you figure out where the problem might be.

Your first step should always be to increase the log level of Kitchen. This was described in
Section 4. We recommend the debug log level. The rowlevel log level will output lines for
each individual row inserted to the database and therefore, this level of verbosity can hinder your
search for the cause of the error.

If you can not find a cause in the output of Kitchen, it is time to look at the audit logs. During
ETL, most actions are logged to tables in the database, these logs can provide clues as to what
is going wrong. First, connect to the database as the tm_cz user as described in Section 9. We
need to find out the job ID of the job that is causing the error. This is probably the most recent
job that was carried out. Execute the following SQL statement:

SELECT * FROM cz_job_master ORDER BY job_id DESC LIMIT 10;

The most recent job is now at the top. The job_status column should show the value FAIL.
You can also check the start date to make sure this is the job you want to investigate. Now we
can go to the audit log to view the steps taken in this job. Suppose the job ID was XXXX, then
execute the following query:

SELECT * FROM cz_job_audit WHERE job_id=XXXX;

You will now get a list of steps taken, this shows you which steps are completed and which steps
fail. To get to the specific error message, execute the following query:

SELECT * FROM cz_job_error WHERE job_id=XXXX;

You will then be able to see the error message. One possible error message is invalid input
syntax for type numeric: "". This indicates that an empty string is being inserted in the
place where a numeric value should go. You probably have an empty cell somewhere in your data
that got overlooked during the curation process.

As an alternative to using the command-line based psql program, you can use any graphical
Postgres administration tool. Here we will describe how to set up pgAdmin, available from http:
//www.pgadmin.org/download/.

http://www.pgadmin.org/download/
http://www.pgadmin.org/download/

First, we need to set up our database connection. Under the File menu, choose Add server.
Give the connection a meaningful name, and fill in the rest of the details. Remember to connect
as user tm cz, with password tm cz. If you are using a tunnel, choose use your tunnel entrance
point as the host and port. The add server dialog should look like shown in Figure 13. Now click
OK.

Figure 13: Add a server in pgAdmin.

On the left side of the main pgAdmin window is the Object browser. You should see your
newly created server connection here. Double-clicking the server name makes pgAdmin connect
to the server. A tree structure is shown representing the contents of the database server. Open
the Databases node, then open the transmart node and the schemas node. This shows all schemas
currently in the transmart database (see Figure 14).

Open the Tables node under the tm cz schema node and find the cz job master, cz job audit
and cz job error tables. You can right-click on any of these tables and choose View data/View
Last 100 rows to see the most recent information, as shown in Figure 15. Alternatively you can
open the Query tool from the Tools menu, and enter the SQL queries described above.

Figure 14: The Object browser in pgAdmin.

Figure 15: Retrieve the most recent information from a table in pgAdmin.

Appendix

A Sample kettle.properties file

Note: lines like these with a # in front of it are comments
Replace XXX by the server name or ip address, this is in most cases 127.0.0.1
e.g. COMMON_DB_SERVER=127.0.0.1
Replace YYY by the port number, for Postgres the default is 5432
if you are using a tunnel, write your local tunnel port here (e.g. 9001)
e.g. COMMON_DB_PORT=9001

COMMON_DB_SERVER=XXX
COMMON_DB_PORT=YYY
COMMON_DB_NAME=transmart

Set schema variables

TM_CZ_DB_NAME=${COMMON_DB_NAME}
TM_CZ_DB_PORT=${COMMON_DB_PORT}
TM_CZ_DB_SERVER=${COMMON_DB_SERVER}
TM_CZ_DB_PWD=tm_cz
TM_CZ_DB_USER=tm_cz

TM_LZ_DB_NAME=${COMMON_DB_NAME}
TM_LZ_DB_PORT=${COMMON_DB_PORT}
TM_LZ_DB_SERVER=${COMMON_DB_SERVER}
TM_LZ_DB_PWD=tm_lz
TM_LZ_DB_USER=tm_lz

DEAPP_DB_NAME=${COMMON_DB_NAME}
DEAPP_DB_PORT=${COMMON_DB_PORT}
DEAPP_DB_SERVER=${COMMON_DB_SERVER}
DEAPP_DB_PWD=deapp
DEAPP_DB_USER=deapp

BIOMART_DB_NAME=${COMMON_DB_NAME}
BIOMART_DB_PORT=${COMMON_DB_PORT}
BIOMART_DB_SERVER=${COMMON_DB_SERVER}
BIOMART_DB_PWD=biomart
BIOMART_DB_USER=biomart

I2B2DEMODATA_DB_NAME=${COMMON_DB_NAME}
I2B2DEMODATA_DB_PORT=${COMMON_DB_PORT}
I2B2DEMODATA_DB_SERVER=${COMMON_DB_SERVER}
I2B2DEMODATA_DB_PWD=i2b2demodata
I2B2DEMODATA_DB_USER=i2b2demodata

BIOMART_STAGE_DB_NAME=${COMMON_DB_NAME}
BIOMART_STAGE_DB_PORT=${COMMON_DB_PORT}
BIOMART_STAGE_DB_SERVER=${COMMON_DB_SERVER}
BIOMART_STAGE_DB_PWD=biomart_stage
BIOMART_STAGE_DB_USER=biomart_stage

B Removing a study

Save the following script to a file, e.g. remove_study.sh.

#!/bin/bash

if [$# -ne 1]; then
echo "Completely remove a study. This includes clinical and omics data."
echo "Usage: $0 <STUDY_ID>"
echo " STUDY_ID: e.g. GSEXXXX, i.e. all caps"
exit

fi

sed "s/{STUDYID}/$1/" <<EOD
DELETE FROM i2b2metadata.i2b2_tags WHERE path=
(SELECT c_fullname FROM i2b2metadata.i2b2
WHERE sourcesystem_cd='{STUDYID}' ORDER BY c_hlevel ASC LIMIT 1);

DELETE FROM i2b2demodata.concept_dimension WHERE sourcesystem_cd='{STUDYID}';
DELETE FROM i2b2demodata.concept_counts WHERE concept_path IN
(SELECT c_fullname FROM i2b2metadata.i2b2 WHERE sourcesystem_cd='{STUDYID}');
DELETE FROM i2b2demodata.patient_dimension WHERE sourcesystem_cd LIKE '{STUDYID}:%';
DELETE FROM i2b2demodata.observation_fact WHERE sourcesystem_cd='{STUDYID}';
DELETE FROM i2b2demodata.patient_trial WHERE trial='{STUDYID}';
DELETE FROM deapp.de_subject_microarray_data WHERE trial_name='{STUDYID}';
DELETE FROM deapp.de_subject_sample_mapping WHERE TRIAL_NAME='{STUDYID}';
DELETE FROM i2b2metadata.i2b2 WHERE sourcesystem_cd='{STUDYID}';
DELETE FROM i2b2metadata.i2b2_secure WHERE c_fullname='{STUDYID}';
EOD

Now you can generate the necessary SQL commands by running the script, giving the study
ID as a parameter:

bash remove_study.sh GSEXXXX

You can also directly execute the generated SQL:

bash remove_study.sh GSEXXXX | psql transmart

Version History

Version 1.0 May 13, 2015 Initial Version

Contributors

� Denny Verbeeck, J&J. dverbeec@its.jnj.com

� Francisco Bonachela Capdevilla, J&J. fcapdevi@its.jnj.com

References

[1] Recombinant Data Corp., Dataset Explorer ETL Guide, 2012, Available at
https://wiki.transmartfoundation.org/download/attachments/131201/
tranSMART_DSE_ETL_Guide.pdf.

[2] tranSMART Foundation Wiki, ETL Section, Available at https://wiki.
transmartfoundation.org/display/TSMTGPL/Data+Sharing+and+Loading.

[3] NCBI-GEO, Available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi.

dverbeec@its.jnj.com
fcapdevi@its.jnj.com
https://wiki.transmartfoundation.org/download/attachments/131201/tranSMART_DSE_ETL_Guide.pdf
https://wiki.transmartfoundation.org/download/attachments/131201/tranSMART_DSE_ETL_Guide.pdf
https://wiki.transmartfoundation.org/display/TSMTGPL/Data+Sharing+and+Loading
https://wiki.transmartfoundation.org/display/TSMTGPL/Data+Sharing+and+Loading
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

	Introduction
	Dependencies
	Pentaho Data-Integration
	Java Runtime Environment
	TranSMART ETL Scripts
	SSH Client
	Postgres Client

	Set-Up
	Database Connection Parameters
	SSH Tunnel
	Linux hosts
	Windows Hosts
	Connecting Through The Tunnel

	Kitchen/Spoon Basics
	Input Files
	Loading A Script

	Clinical Data
	Raw Data File
	Column Mapping File
	Word Mapping File
	Record Exclusion File
	Upload Script
	Example

	Gene Expression Data
	Raw Intensity Input Files
	Subject Sample Mapping File
	Sample Remapping File
	Upload Script
	Example

	Gene Expression Platform Definitions
	Platform Definition File
	Upload Script
	Example

	Uploading Data with ICE
	Removing Data
	Troubleshooting
	Sample kettle.properties file
	Removing a study

